Indian School Al Wadi Al Kabir

Assessment – I (2025-2026)

Class: XII Subject: Physics (042) Max. marks: 70 Date: 16/09/2025 Set- II -MS Time: 3 Hours

[1][a] no net charge is enclosed by the surface

[2][d] 4:1

[3][c] repulsive and $\frac{q\lambda}{2\pi X \varepsilon_0}$

[4][c]-qLE

[5][d]Zero

[6][b] E = 0 N/C, V = 30V

[7][a]

[8](C] 2H

[9][c] 16/3 ohm

[10] [c]be double of its initial value

[11][c] π :4

[12] [d] diamagnetic

[13]A

[14]A

[15]A

[16]A

[17] Capacitance -figure [1/2] Steps[1] Final result –[1/2]

OR

[17] potential energy -figure [1/2]

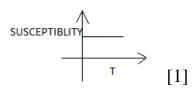
Steps[1]

Final result –[1/2]

[18]der. resistivity figure [1/2]

Steps[1] Final result -[1/2]

[19]Torque figure [1/2] Steps[1], Final result –[1/2]


OR

[19] Moving coil galvanometer -fig [1/2],

deri [1], final result [1/2]

[20][i] [a] a is diamagnetic, b is par[b] [1]

[ii]

[21]

(i)
$$\phi_2 = MI_1$$

Slope of the graph, $M = \frac{\phi_2}{I_1}$
 $M = 2.5 \text{ H}$

(ii) $|\epsilon_2| = M \frac{dI_1}{dt}$
 $\frac{dI_1}{dt} = \frac{|\epsilon_2|}{M} = \frac{100}{2.5} = 40 \text{ As}^{-1}$

SECTION C

[22]

22 Charge on sphere S₁:

Q₁ = surface charge density × surface Area 1/2
=
$$\left(\frac{2}{\pi} \times 10^{-9}\right) \times 4\pi (1 \times 10^{-2})^2$$

= $8 \times 10^{-13} C$ 1/2 +1/2

Charge on sphere S2:

Q₂ = surface charge density × surface Area
=
$$\left(\frac{2}{\pi} \times 10^{-9}\right) \times 4\pi (3 \times 10^{-2})^2$$

= $72 \times 10^{-13} C$ 1/2

When connected by a thin wire they acquire a common potential V and the charge remains conserved.

$$Q_1 + Q_2 = Q_1' + Q_2'$$

 $\frac{Q_2'}{Q_1'} = \frac{r_2}{r_1}$ 1/2
On solving, $Q_1' = 2 \times 10^{-12} C$ 1/2

[23]Definition - drift velocity [1]

Fig. [1/2]

Steps[1]

Final ans -[1/2]

[24]

b)

$$R = \frac{v}{i_g} - G$$

$$R_1 = \frac{2V}{i_g} - G = R_o - G$$

$$R_1 + G = 2R_o$$

$$\left[Where R_o = \frac{v}{i_g}\right]$$

Similarily

$$R_2 + G = R_o$$

$$R_3 + G = R_o/2$$

From the above equations,

$$R_1 - R_2 = 2(R_2 - R_3)$$

 $R_1 - 3R_2 + 2R_3 = 0$ [1+1+1]

[25] Bp =
$$\frac{\mu_0 I a^2}{2[r^2 + x^2]^{3/2}} = \frac{\mu_0 I a^2}{2[r^2 + r^2]^{3/2}} = \frac{\mu_0 I r^2}{4\sqrt{2}r}$$
towards P [1]

$$Bq = \frac{\mu_0 2Ir^2}{4\sqrt{2}r} \text{ towards Q [1]}$$

Net B = Bq - Bp =
$$\frac{\mu_0 I}{4\sqrt{2}r} [1/2 + 1/2]$$

[26] Cof self induction def:[1]

Fig[1/2],Steps

[1]Final ans [1/2]

OR

[26] Basic principle -EMI [1/2]

Diagram of ac generator-[1],

Construction [1], Working [1/2]

[27]

a)
$$X_{L} = \omega L = 2\pi \nu L \quad [1/2]$$

$$\therefore X_{L} = 2\pi \times 50 \times \frac{5}{\pi} = 500 \,\Omega \quad [1/2]$$

$$I_{rms} = \frac{200}{500} = \frac{2}{5} = 0.4A \quad [1/2]$$

$$I_{0} = \sqrt{2} I_{rms}$$

$$= \sqrt{2} \times 0.4$$

$$= 0.56 \,A \quad [1/2]$$

[Even if student expresses the answer as $(0.4\sqrt{2})A$ give the last ½ marks]

b)
$$\frac{\pi}{2} or 90^{\circ}$$
 [1/2] decreases 1/2]

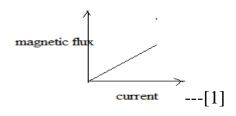
[28]
$$\omega o = \frac{1}{\sqrt{LC}}$$
 or $\omega o = 50 \text{ rad/s}$ [1/2]

Irms =
$$\frac{Erms}{Z} = \frac{200}{40} = 5A$$
 [1/2]

Current amplitude Io = Irms x $\sqrt{2}$ = 7.07A -[1]

(iii) Power dissipated in circuit

P=Erms Irms
$$\cos \phi = 200x5x1 = 1000W$$
 [1/2 + 1/2]


[29] [1] Ans.[d] electric field, E = 0, Potential V = constant

[2] Ans.[b]
$$\frac{-q}{4\pi r_1^2}$$

[3] Ans. [c]
$$\frac{Q+q}{4\pi r_2^2}$$

$$[4]$$
 Ans. $[b]+q$

[2]

[3] Lenz's law [1]

Magnet and coil experiment .Mention about the repulsion during the forward motion of the magnet towards the coil [1]

SECTION E

[31] [1] [a]derivation force between parallel conductors

```
Def 1A -- [1]
[b] F = q [vxB] = q [3 x10^5 \hat{\iota} x 0.4 \hat{\iota} + 0.3 \hat{\jmath}]
                                                                    [1]
F = 4.8 \text{ x} 10^7 \text{a}
a = 4.32 \times 10^{12} \widehat{K} \frac{m}{s^2} [1/2]
                                                    OR
[31][II] [a]Magnetic field due a coil at a distance
Fig. [1]
Steps
           [1+1]
Final result
                 [1/2]
[b]
  I = e/T = e \omega/2\pi
  B = \mu_o I/2r = \mu_o e \omega/4\pi r \left[ 1/2 + 1/2 + 1/2 \right]
[32][I][i] def -mutual induction -[1]
[ii]Der of mutual inductance
Fig. [1/2]
Steps [1+1/2] Final result [1/2]
[iii] M = e_2 / di_2 / dt
                              [1/2]
=(50 \times 10^{-3}) / (8/0.5) [1/2]
=3.125 \times 10^{-3} H
                                [1/2]
                                                    OR
[32] [II][i] der. emf in rotatory motion
                   Steps [1+1+1/2] Final result [1/2]
Fig. [1/2]
[ii]
  (iii) (c): Here, l = 0.1 \text{ m}, v = 1 \text{ m s}^{-1}
       I = 50 \text{ A}, B = 1.25 \text{ mT} = 1.25 \times 10^{-3} \text{ T}
  The induced emf is, \varepsilon = Blv
  The mechanical power is
       P=\varepsilon I=Blv\dot{I}=1.25\times 10^{-3}\times 0.1\times 1\times 50
         = 6.25 \times 10^{-3} \text{ W} = 6.25 \text{ mW}
                                                           [1/2 + \frac{1}{2} + 1/2]
[33][I][i] dia gram -step up [1]
Principle --- [1/2]
Derivation of K STEPS – [1+1/2], Final result –[1/2]
[ii]
```

Solution. (a) Transformation ratio K = $\frac{Ns}{Np}$ or Ns = K Np = 100 X 100 = 10,000 [1/2]

(b) Input voltage Vp = 220 V, Input power Pin = 1100 W [1/2]

Current in primary coil Ip = $\frac{Pin}{Vp}$ = 1100/220 = 5 A [1/2]

OR

[33][II] [i]LCR

Circuit, [1/2],

Phasor diagram [1/2], Steps [1],

Peak value of current [1/2]

Phase relation [1/2], Z = ? [1/2]

[ii]

Reactance of the inductor (XL) is given by,

 $XC = \omega L = 2\pi f L$

 \Rightarrow XC=500 Ω [1/2]

(a) Impedance of an LCR circuit (Z) is given by,

Z=R2+(XC-XL)2

 \Rightarrow Z=(300)2+(500-100)2

 \Rightarrow Z=(300)2+(400)2

 $\Rightarrow Z=500 \qquad [1/2]$

RMS value of current Irms is given

Irms=Zerms

⇒Irms=50050

 \Rightarrow Irms=0.1A [1/2]